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A fourth-order compact finite difference scheme is presented for second-order partial dif- 
ferential equations. The scheme is derived for a one-dimensional non-equidistant mesh, which 
makes it particularly useful in problems with sharp boundary layers. The inclusion of general 
boundary conditions does not reduce the order of the scheme for the boundary points. The 
scheme is tested on a representative model equation; we shortly discuss its stability in the sim- 
plest time-dependent heat flow problem and its use in more dimensions. 0 1985 Academic press, 

Inc. 

1. INTRODUCTION 

In this paper we present a fourth-order compact finite difference scheme for a set 
of second-order ordinary or partial differential equations. The scheme is based on a 
non-equidistant mesh, which makes it particularly useful in problems involving 
sharp boundary layers. We have used the scheme, for example, in calculations of 
steady-state density profiles of several ion species in fusion plasmas Cl]. 

The derivation of the purely tridiagonal scheme, including boundary conditions, 
is presented for a one-dimensional non-equidistant mesh. It is based on a method 
attributable to Krause [2]; the elimination procedures required were partly perfor- 
med by means of an algebraic manipulation program. Results of tests on a 
representative model equation are given. 

Generalization of the scheme in more dimensions, using ADI-type schemes, is 
straightforward. For one-dimensional problems such as 

Cl y” + c2 y’ + c3 y = d (11 

with coefficients and right-hand sides that are computed with few arithmetic 
operations, the fourth-order scheme requires approximately the same com- 
putational effort as a second-order scheme for the same accuracy. In most plasma- 
physics’ problems, the coefficients and right-hand sides are obtained from lengthy 
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calculations and here the use of the fourth-order scheme pays because of the reduc- 
tion of the required number of mesh points. 

The stability of the scheme in time-dependent problems is shortly discussed; a 
stability analysis is given for the simplest heat flow equation. 

2. THE COMPACT SCHEME 

The basic idea behind compact schemes is that one supplements the second-order 
differential equation with fourth-order relations between the function values y and 
the spatial first and second derivatives, F( =v’) and S( =v”), on three adjacent mesh 
points. In this way, a scheme of fourth order, yet based on only three points, is con- 
structed [3]. The required fourth-order relations can be obtained in various ways, 
e.g., from Taylor expansions as we shall show later in this chapter. For a review of 
compact methods we refer to Hirsh [4]. 

The most straightforward method in which one adds two relations to the dif- 
ferential equation at each inner mesh point and solves the resulting block 
tridiagonal system for y, F, and S, has the disadvantage that it requires a boundary 
condition on the second derivative [3,4]. In order to avoid the use of points out- 
side the computational domain, this boundary condition must be based on only 
two points, which at best is of third order [4]. 

A different approach, attributable to Krause [2,4], does not have this advan- 
tage. Here, a system of fourth-order relations together with the differential equation 
on three adjacent mesh points is formulated such that the derivates F and S can be 
eliminated. Just one equation for the three function values remains, and one ends 
up with a purely tridiagonal system. A proper combination of fourth-order relations 
with both the boundary conditions and the differential equation ensures a fourth- 
order truncation error also at the boundaries. 

We have used the same method as Krause, but derived the scheme for a non- 
equidistant mesh, which makes the reduction of the system of equations to a 
tridiagonal scheme more involved. We used the algebraic manipulation program 
SCHOONSCHIP [S] to perform the major part of this reduction. 

Next, we shall give the fourth-order relations we used as a supplement to the dif- 
ferential equation, discuss the reduction of the system to a tridiagonal one, present 
the scheme, and show the inclusion of general boundary conditions on the function 
and its first derivative. 

From the .Taylor series expansion for the function values y at points j+ 1 and 
j- 1 on the mesh x. I’ 

we obtain 
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A-y’ -Ad,yO+A+ y- ziA+A A,S+‘+~A+A-(A~-A~)yiii - 

+~A+A-(A~tA~)yiv 

+&,A+Ap(A4+ -44)~~ 

+&jA+A-(A: +A?)yyi, (4) 

A~y++(A~-A~)y”-A;y-~A+A-A,~+~A~A~Afy’ii 

+&A:A2(A:-A’_)yiv 

+&,A:A2(&+ +A~).Y” 

+&,A:A~(A4+-A‘+)yvi. (5) 
Here, Fs y’, S s y”, superscripts + , 0, - indicate points j-t 1, j, and j - I; 
4+~x+-x”,A~~xo-x--, and A,zA++A_. 

Equations (4) and (5) form the basis for the derivation of fourth-order relations 
between y+l”* -, I;+,‘, -, and S’+,‘, -. 

Differentiation of both (4) and (5) once and twice yields 

A~F+-A,~+A+F-z;A+A~A,yiii+~A+A~(A~-A~)yiV 

+-,I,-A+A-(A;+A?)y” 

+&A+A_(A4,-A!)yvi, (4a) 

A~S+-A,S”+A+S-~~A+A~A,yi’+~A+A~(A~-A’_)y” 

+&A+A-(A:+A?)yYi, (4% 

A~Ft+(A~-A~)~-A~F-~A+A-A,So+~A~A~A,yiV 

+$A:A2_(A+A2)yv 

+&,A~A~(A;+A~)y”‘, 04 

A~S++(A~-A~)S”-A~S-~A+A_A,yiii+&A~A~A,yy 

+&A: A? (A: - 42) y”‘. C5b) 
The substitution of y”’ from (5b) and of y” from (4b) into Eqs. (4), (4a), (5), and 
(5a) now yields 

A-y+-A,y’+A+y--~(A~+A+A~-A’)S+-~(A~+3A+A~+A~)S” 

+$A;-A+A--42)s 

z -A+A-A, 
1440 {4(A+-A-)(2A:+5A+A_+2A2)yv 

-t(344_+2A;Ap-7A~A~+2A+A3_+3A4)yvi), (6) 
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A-F+ -A,F’-‘+A+F- -$(A- +2A+)S 

% -A+A-A, 
720 

(lO(A: +A+A- +A?)y” 

+(A+-A-)(44:+5A+A-+4A<)y”j, 

A~y++(A~-A~)y”-A2+y--A+A-At~-~A+A~AtS+ 

-&A+ A- A,(A+ -A-)S’+&A:A-A$- 

z-“f;;;“‘(4(26$ +3A+A- +242_)y” 

+(A+-A-)(34:+5A+A-+342)y”‘, 

If we neglect the fourth-order truncation errors, Eqs. (6)-(9) supplemen 
ferential equation at the three points considered, i.e., the linear equations 

c$yk+c$Fk+c$Sk=dk (k= +,o, -1, 

to form a system of seven equations in nine unknowns. It is now po 
eliminate Fk and Sk for k = +, 0, - and end up with one equation 
unknowns, viz., the y k. This equation is the required compact relation, thl 
order tridiagonal scheme. We have used the algebraic manipulation 
SCHOONSCHIP [S] to perform the major part of the elimination procel 

Finally, the following compact relation was obtained: 

F1y++F2yo+F3y-=R, 

where 

Fk = Ew%4 - Ezdh 

-& = D,kD,, - Ddu 

Ezic = D,,&, - D,,&, 

R=S,&--A,, 

(k = 1, 2, 3), 

(k = 192, 3,4), 

(k = 1, 2, 3,4), 
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and 

I),,=-A:{2(64:+6A+A-+A2)c:+2Ar(2A++A_)A+ c2++A;A:c:}, 

t-1 

D1Z=-2A~{(6A~-3A+A&A~)c~+A,(A+ -UA+c:), (13bl 

D13=2A:((66:-i-15d+d_+84z)~:+dI(d+~24_)d+~2+), (13C) 

014=A:A+A- {2(3A++A~)c~+A,A+c:), (l3d) 

D15=AtA:A- (2(3A++2AJc~+A,A+c;), (1%) 

T, = -A;A$A~ d+, (W 

D,, = 244 et, (14a) 

D,,=A;(-~(~A~-~A+A~+A~)c~+A;A~c,O), (14b) 

Dz3=2(3A+ +4A-)A: c;, (14c) 

Dz4=AtA+A.- (2(2A:+A+A--A2)c~+A,A+A-c;}, (14dl 

D,,=2A,A:A_ c:, (ILee) 

T =A=A= A2 do 2 t+-3 (14fl 

D,, = -244 c;, (Isa) 

L&= -2A:(3A+ -A-)c;, t15b) 

D,,=A: {~(~A~+~A+A_+~A~)c,-A~A~ cj), 

D34=2A:A+Ap cc, 

D,,=A&A_ {2(2A++3A_)c,-A-Arc,), 

T 
3 

= -A242 A2 d- it-. 

General boundary conditions 

are easily inserted. We add the linear equation in y and F representing the boun- 
dary condition to the system of seven equations (6)-( 10~) for the first interior point 
away from the boundary. Thus, we have eight equations in nine unknows. Process- 
ing the elimination procedure now not only for F+’ ‘, - and S+’ ‘, -, but also for y- 
(right boundary) or y + (left boundary) yields one equation in two unknown 
function values, yN- 1 and yN respectively y1 and y,. This completes the tridiagonal 

581/61/T6 
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system with fourth-order boundary conditions on both sides. The coefficients 
resulting from the elimination procedure at the boundaries are as follows. 

At the left boundary 

with 

(17) 

Hk=FIGk-FkGI, (174 

P=F,Q-G,R, (17b) 

Gic = YVLIJ%, - &J&J (k= 1,2), (17c) 

Gs = B&D,, + Y&V%, - DuEA (17d) 

Q = ~Edh, + Y(D,J, -44 Td, UW 

where F, , F;, F3, D,, E,, R, Sz, and T3 are to be taken from the compact scheme 
(Eqs. (llt(15)) at pointj=2. 

At the right boundary 

L,YN+-LYN-,=M (18) 

with 

Lk=KkFs-K3Fk (k = 621, 

M=F,O-K3R, 

K/c = 44 Hk - J% H4 (k = 1,2, 3), 

O=E,,P-H,&, 

Hrc = GA, -GA, (k = 1, 2, 3, 4), 

P=&Q-GsTz, 

Gl= -A3A+AJ-243(2A+ +L)y, 

G2= -2A;(A+ -A-)y, 

G3=2A:(A+ +2A-)y, 

Gd=A:A+A-y, 

%=A:&AJ, 

Q= -A,A+A’& 

(184 

(18b) 

(18~) 

(18d) 

(184 

(W 

(18g) 

(18h) 
(18i) 

(l?i) 

(18k) 

(181) 

whereF,,F,,F,,D,,,E,,R,S,, T3,A+, A-, and A, are to be taken from the com- 
pact scheme at point j= N- 1. 
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3. TEST OF THE SCHEME 

As an example we have chosen a simple transport problem in which a particle 
source is prescribed as axky, where LX is a constant and x is the spatial coordinate; 
the particle flux r is coupled to the gradient of the density y by a constant diffusion 
coefficient D. Thus, in a plane geometry we have 

These equations combine to the second-order ODE 

y” + axky = 0, (19cl 

with a = a/D, which has the analytical solution [6] 

where J,,p is the Bessel function of fractional order l/p, p = k + 2, and G,, z are the 
integration constants. Insertion of boundary conditions y( 1) = y, and y’(O) = 0 and 
taking a power series representation [6] leads to 

2j-l/(k+2) 

4 
8- 

6- 

4- 

2- 

0 
/ I I I 

0.0 0.2 0.4 0.6 0.8 1.0 

-X 

FIG. 1. The solution of the differential equation: y” + ax”y = 0 for a = 150 and k = lo. 
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Figure 1 shows the solution of this model equation for a = 150 and k = 10. The 
coefficients a and k allow for tuning of the width of the boundary layer and of the 
value of the function at x = 0. 

The meshes we used for numerically solving Eq. (19~) are given by 

xj=l-{l-~~, for m= 1, 2, 3, 4, j= 1, 2 ,..., N, 

which enables us to take meshes from equidistant (m = 1) to meshes with a high 
density of points in the boundary layer. 

The numerical results for a = 150 and k = 10 are shown in Fig. 2, where the 
maximum absolute error E = Maxj/vj-u(xi)l, with yi the numerical and y(xj) the 
analytical solution at xi, is plotted vs the average mesh spacing, l/(N- 1). For 
comparison, the same quantity is also plotted for the usual 3-point second-order 
scheme, where 

The integer values in Fig. 2 denote the value of m used for the mesh. 
The behaviour of the error for the two schemes is as expected. The truncation 

error proportional to y”’ in the second derivative (Eq. (21)) of the second-order 
scheme is also of second order in l/(N - 1) as long as the function prescribing the 
density of the mesh points is smooth enough. Both schemes show an increase of the 
error when m is raised above 2. In that case, the density of points near x = 0 

FIG. 2. The maximum error E of the compact scheme (solid line) and of the second-order scheme 
(dashed line) for the model equation: y” + 1.50x”‘y = 0. Integer values denote the choice of m, the power 
in Eq. (20). 
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becomes too small and the error is no longer mainly determined by what happens 
in the boundary layer. The reduction of the error by a factor of 10, or equivalently 
of the number of required mesh points by a factor of 2, when changing from an 
equidistant (m = 1) to a parabolic distribution (m = 2) for the compact scheme, 
occurs also at larger values of the constants a and k. 

For m = 2, the second-order scheme roughly needs four to live times as many 
points as the compact scheme at a relative error level (measured by the euclidean 
norm of the error and function vectors) of 10P3. At high values of the parameter 61, 
even more points are required; the number of points is rou hl proportional to 
h(o) for the second-order scheme and proportional to 4 v(o) for the compact ,i” 
scheme. This reflects the order of the schemes. An analysis of the computational 
effort, i.e., the number of multiplications, shows that the effort required to reach this 
accuracy is approximately the same for both schemes. IIowever, it should be 
stressed again that in most practical problems the calculation of the coefficients of 
the differential equation is more involved. Then, the strong reduction of the 
required number of mesh points compensates by far the effort in the construction of 
the compact scheme. 

4. STABILITY 

The stability of the compact scheme in time-dependent problems can be analysed 
in the usual way with the von Neumann method [7]. The right-hand side R of 
Eq. (11) in this case is a linear combination of the time derivative at the mesh 
points considered. If we write the solution to the difference equation as 

yr = y(n dt, xi) = 5” exp ( imxj) 

and require the multiplication factor 141 to be less than 1, the restriction on the time 
step is obtained. In general, this restriction will be a complicated one. We perfor- 
med the analysis for the heat flow problem 

Yt = OY”, (23) 

using forward differencing for the time derivative. The resulting restriction on the 
time step 6t for a non-equidistant mesh reads 

CT& 1 
-G A; 6(1-h) 

(a2-~+l)2-~2(1-~)2cosmd,-a2cos(1-a)md,-(1-a)2cosclmb, 
a2-a+l+or(l-a)cosmd,-acos(l-a)md,-(I-a)cosamd, ’ WB 

where CI = A.-/A, and u is the implicitness factor [7]. This holds for o < 0.5; for 
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o > 0.5 the scheme is unconditionally stable. If we take the mesh to be equidistant 
(d = dJ2), the restriction for a fully explicit scheme reduces to 

oat 1 
6295. (244 

The second-order scheme here yields the well-known upper value of l/2. Thus, as 
long as the truncation error in the discretization of the time derivative can be 
neglected, the compact scheme allows for a larger time step than does the second- 
order scheme, because, for the same accuracy, A is allowed to be much larger in the 
former. 

5. MORE-DIMENSIONAL PROBLEMS 

The compact scheme can be used in more dimensions, at least in procedures 
where the spatial operator is made implicit successively for all dimensions as in 
ADI-type schemes. A 2-dimensional problem 

ur f-L(U) + L,(u), (25) 

where L, and L, are second-order spatial differential operators, for example, may 
be solved by means of the method of Peaceman and Rachford [S], which consists 
of two time steps, each of l/2&: 

g + l/2 -un=$ {Lx(u):“+‘:‘+; (L,(u)}“, 

d--U 
a+ l/2 _ -; {L&)}““/‘+~ {L,(u)}“+‘. 

L, and L, are then evaluated according to the compact scheme. Note that in the 
first step we need L,(u) at three x values, because the right-hand side of the com- 
pact scheme is a linear combination of U, and L,,(u) at the three x mesh points. The 
same holds in the second step for L,(u). 
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